In this paper, a new dynamic model is presented for the experimental data generated by the Madison Symmetric Torus (MST) machine. The model is based on a modified sine-Gordon (SG) dynamic equation. The modified sine-Gordon equation model effectively captures the behavior of the slinky mode in reversed-field pinch experiments. In addition, this paper demonstrates how the derived model accurately describes the behavior of the localized magnetohydrodynamic mode (slinky mode) that appears in reversed-field pinch toroidal magnetic confinement systems. The modified SG equation model is solved analytically by using the perturbation method. The resulting model is fit to match a variety of experimental results in the MST reversed-field pinch experiment. The efficacy of the newly developed model in effectively representing the slinky mode is verified by comparing obtained analytical solution to experimentally measured data.
Read full abstract