Understanding aboveground biomass (AGB) and its spatial distribution is key to evaluating the productivity and carbon sink effect of forest ecosystems. In this study, a 123-year-old Chinese fir forest in the Dabieshan Mountains of western Anhui Province was used as the research subject. Using AGB data calculated from field measurements of individual Chinese fir trees (diameter at breast height [DBH] and height) and spectral vegetation indices derived from unmanned aerial vehicle (UAV) remote sensing images, a random forest regression model was developed to predict individual tree AGB. This model was then used to estimate the AGB of individual Chinese fir trees. Combined with digital elevation model (DEM) data, the effects of topographic factors on the spatial distribution of AGB were analyzed. We found that remote sensing spectral vegetation indices obtained by UAVs can be used to predict the AGB of individual Chinese fir trees, with the normalized difference vegetation index (NDVI) and the optimized soil-adjusted vegetation index (OSAVI) being two important predictors. The estimated AGB of individual Chinese fir trees was 339.34 Mg·ha−1 with a coefficient of variation of 23.21%. At the local scale, under the influence of elevation, slope, and aspect, the AGB of individual Chinese fir trees showed a distribution pattern of decreasing from the middle to the northwest and southeast along the northeast-southwest trend. The effect of elevation on AGB was influenced by slope and aspect; AGB on steep slopes was higher than on gentle slopes, and the impact of slope on AGB was influenced by aspect. Additionally, AGB on north-facing slopes was higher than on south-facing slopes. Our results suggest that local environmental factors such as elevation, slope, and aspect should be considered in future Chinese fir plantation management and carbon sink assessments in the Dabieshan Mountains of western Anhui, China.