Abstract Optical data centers serve as the backbone of modern networking, facilitating seamless connectivity for users across the globe. The connection between users and the optical data centers is established through various network topologies, which play a critical role in determining the traffic characteristics. The design and implementation of these network topologies, along with the assortment of applications hosted on optical data centers, significantly influence the flow of data within the network. The advent of cloud computing has further revolutionized optical data center operations, leading to the coexistence of a wide range of applications on different optical data center switches. As a result, the traffic characteristics observed on each optical data center switch vary significantly. This diversity in traffic patterns necessitates a comprehensive understanding of how data arrival is managed and handled by the networking infrastructure. In this paper, we explore the concept of a random traffic model for data arrival on Top of Rack (ToR) switches, which represent a crucial component of optical data center networking. In the modeling, small world model is considered. The effect of buffering and packet priorities is observed on traffic shaping. Finally, to evaluate the effectiveness of the traffic shaping techniques, we measure the packet loss performance of ToR switches and found to be as low as 10−4 even at the higher loads. Blocking performance provides valuable insights into how effectively the optical data center network manages incoming data and avoids congestion or bottlenecks.
Read full abstract