To examine the effect of orthodontic tooth movement on experimental Wistar rats by synthesizing melatonin formulation for administration and conducting serological analysis of alkaline phosphatase (ALP) and melatonin, along with histological evaluation and immunohistochemistry analysis of ALP and interleukin-6 (IL-6) in both control and experimental groups. Nine male Wistar rats were randomly divided into negative (n = 3), positive control (n = 3), and experimental groups (n = 3). Endogenous melatonin levels (pg/mL) were assessed, and an orthodontic force of 10 cN was applied to positive control and experimental groups using a ligature wire. The experimental group received a daily dose of 10 mg/kg melatonin via intraperitoneal injection. After eight weeks, blood samples and radiographs were collected, and mandible sections were prepared for histopathological and immunohistochemical evaluation. The radiographic evaluation shows minimal orthodontically induced tooth movement in comparison to the positive control group. In serological analysis, ALP was found to be increased in rats under the melatonin group. And, in the immunohistochemical evaluation, ALP was found to be increased in the melatonin group, whereas IL-6 was found to be decreased in the same (P= 0.027). The study elucidates that the administration of exogenous melatonin during orthodontic tooth movement in Wistar rats induces bone formation and inhibits resorption, eventually decelerating the process of orthodontic tooth movement. Our study emphasizes melatonin's dualistic role in stimulating bone production and suppressing resorption, offering potential therapeutic clinical implications in orthodontics.
Read full abstract