Invasive species pose a threat to the ecological balance of the ecosystems they invade by altering local host-pathogen dynamics. To investigate these relationships and their potential consequences, we examined the prevalence and genetic diversity patterns of Trypanosomatidae, Lipotrophidae, and Nosematidae in a collection of sympatric isolates of the invasive hornet Vespa velutina and local Hymenoptera from two recently colonized areas: Europe and South Korea. Data were gathered through PCR amplification and massive parallel sequencing, and analyses were conducted using population genetics tools. Parasite prevalences showed substantial variation depending on (i) the parasite family (Trypanosomatidae and Nosematidae were the most and less prevalent, respectively), (ii) location (e.g. Galicia displayed the highest pooled values), (iii) the season (highest in spring for Trypanosomatidae and Lipotrophidae), and (iv) the host. V. velutina exhibited significantly lower parasite occurrence than native Hymenoptera across all parasite families (consistent with the enemy release hypothesis), although this difference was less pronounced during the periods of heightened predatory activity, suggestive of trophic transmission. Parasite species displayed significant genetic differentiation between European and South Korean isolates, yet no differentiation was observed across hosts, suggesting that all Hymenoptera are exposed to a common local pathogen population. There was no indication that V. velutina acted as a carrier of foreign parasites to the invaded territories.
Read full abstract