Abstract

The Indian subcontinent is extremely diverse in terms of its flora and fauna. However, only a handful of studies have aimed to understand the diversity of freshwater invertebrates using multiple lines of evidence in recent times. Here we aimed to estimate the cryptic diversity of two widespread freshwater snail species within the genus Pila (Röding, 1798) and uncover the processes behind lineage diversification in these species. We sequenced mitochondrial and nuclear markers from a comprehensive sampling of specimens from different river basins in India. We implemented an integrative taxonomy approach to delimit the lineages in these groups, employing phylogenetic, geometric morphometric and niche modelling-based methods. Then, we investigated the drivers of lineage divergence in these species using population genetic tools in conjunction with divergence time estimation. We found that both species consist of several genetically and ecologically distinct lineages. The genetic data showed that several of these lineages are restricted to a single or a few river basins. The divergence time estimation analyses indicated that the time frame of divergence within the species coincided with paleohydrological and paleoclimatic events in the Miocene. The diversification was primarily driven by allopatric isolation into different river basins. To conclude, the study sheds light on the complex interaction between the habitat preference of the species and the environment in shaping the diversification patterns in this group.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call