One of the main factors limiting active biomonitoring with aquatic mosses is the lack of sufficient material. A laboratory culture of the moss would solve this problem and thus convert the technique into a valuable biotechnological tool for monitoring water quality. With this aim, we first established small and large scale axenic in vitro culture systems for the aquatic moss Fontinalis antipyretica. We then attempted to enhance the growth rate of the cultures by modifying temperature, photoperiod and medium composition (N:P ratio, P concentration, CO2 supply, NH4NO3 supply and sucrose supply). None of these modifications greatly increased the in vitro growth rate. However, the growth rates were sufficiently high (relative to the initial weight of the cultures) in both systems (45 and 6 mg·day−1·g−1 for flasks and bioreactors respectively) to enable the production of large amounts of material. The ability to culture the material will substantially improve the applicability of the moss bag technique.
Read full abstract