The problem of optimal tool orientation determination in five-axis flat-end milling of sculptured surfaces is examined in this paper. The optimal tool orientation avoids local and global gouging of the tool and maximises a specific criterion related to machining efficiency. Two new criteria are introduced in this paper to quantify the tool orientation quality at a cutter contact point: infinitesimal machining volume (IMV) and infinitesimal machining area (IMA). The IMV criterion is used to maximise the material removal at the cutter contact point. The IMA criterion attempts to identify tool orientations that would lead to minimised overall tool path length. Using one of these criteria, an optimisation problem can be formulated to determine the optimal tool orientation among feasible gouge-free orientations. It is shown that the commonly adopted criterion of machining strip width in the determination of the optimal tool orientation cannot contribute towards maximising the material removal and does not really result in minimum overall tool path length. Results from various case studies have indicated that the newly introduced criteria can be used to generate optimal tool orientations that significantly increase machining efficiency.