Abstract: This paper introduces a new text-to-speech presentation from end-to-end (E2E-TTS) using toolkit called ESPnet-TTS, which is an open source extension. ESPnet speech processing tools kit. Various models come under ESPnet TTS TacoTron 2, Transformer TTS, and Fast Speech. This also provides recipes recommended by the Kaldi speech recognition tool kit (ASR). Recipes based on the composition combined with the ESPnet ASR recipe, which provides high performance. This toolkit also provides pre-trained models and samples of all recipes for users to use as a base .It works on TTS-STT and translation features for various indicator languages, with a strong focus on English, Marathi and Hindi. This paper also shows that neural sequence-to-sequence models find the state of the art or near the effects of the art state on existing databases. We also analyze some of the key design challenges that contribute to the development of a multilingual business translation system, which includes processing bilingual business data sets and evaluating multiple translation methods. The test result can be obtained using tokens and these test results show that our models can achieve modern performance compared to the latest LJ Speech tool kit data. Terms of Reference — Open source, end-to-end, text-to-speech
Read full abstract