Alzheimer's disease (AD) is a progressive neurodegenerative disease, characterized by oxidative stress, neuroinflammation, mitochondrial dysfunction, neurotransmitter imbalance, tau hyperphosphorylation, and amyloid beta (Aβ) accumulation in brain regions. The gut microbiota (GM) has a major impact on brain function due to its bidirectional interaction with the gut through the gut-brain axis. The gut dysbiosis has been associated with neurological disorders, emphasizing the importance of gut homeostasis in maintaining appropriate brain function. The changes in the composition of microbiomes influence neuroinflammation and Aβ accumulation by releasing pro-inflammatory cytokines, decreasing gut and blood-brain barrier (BBB) integrity, and microglial activation in the brain. Postbiotics, are bioactive compounds produced after fermentation, have been shown to provide several health benefits, particularly in terms of neuroinflammation and cognitive alterations associated with AD. Several research studies on animal models and human have successfully proven the effects of postbiotics on enhancing cognition and memory in experimental animals. This article explores the protective effects of postbiotics on cellular mechanisms responsible for AD pathogenesis and studies highlighting the influence of postbiotics as a total combination and specific compounds, including short-chain fatty acids (SCFAs). In addition, postbiotics act as a promising option for future research to deal with AD's progressive nature and improve an individual's life quality using microbiota modulation.
Read full abstract