Small interfering RNA (siRNA) mediating specific gene silencing provides a promising strategy for anti-inflammatory therapy. However, the development of potent carriers for anti-inflammatory siRNA to macrophages remains challenging. With the aim of realizing potent delivery of siRNA to macrophages, we engineered ionizable lipid nanoparticles (LNPs) with the key component of synthetic lipid-like materials. By varying the amine molecules in the structure of synthetic lipid-like materials, a potent LNP (1O14-LNP) was identified, which exhibited efficient transfection of macrophages by facilitating efficient internalization and endosomal escape. The 1O14-LNP successfully delivered anti-inflammatory siRNA against interleukin-1β (siIL-1β) with more than 90% downregulation of IL-1β expression in LPS-activated macrophages. From in vivo studies, systemic administrated 1O14-LNP/siRNA mainly distributed in liver and efficiently captured by hepatic macrophages without notable sign of toxicity. Furthermore, LPS/d-GalN-induced acute liver injury model treated with 1O14-LNP/siIL-1β resulted in significant suppression of IL-1β expression and amelioration of liver tissue damage. These results demonstrate that the engineered ionizable LNP provides a powerful tool for siRNA delivery to macrophages and that the strategy of silencing of pro-inflammatory cytokines holds great potential for treating inflammatory diseases.
Read full abstract