Abstract

Small interfering RNA (siRNA) is expected to be a novel therapeutic tool, however, its utilization has been limited by inefficient delivery systems. Recently, we have developed novel polyethyleneglycol modified liposomes (Bubble liposomes; BL) entrapping an ultrasound (US) imaging gas, which can work as a gene delivery tool with US exposure. In this study, we investigated whether the BL were suitable for the delivery of siRNA. BL efficiently delivered siRNA with only 10 s of exposure to US in vitro. Specific gene silencing effects could be achieved well even in the presence of serum or with the disruption of endocytosis. We suggest that siRNA is directly introduced into the cytoplasm by the BL and US and the mechanism enables effective transfection within a short time and in the presence of high serum. Transfection of siRNA into the tibialis muscles with BL and US was also performed. The gene-silencing effect could be sustained for more than 3 weeks. Thus, BL could be a useful siRNA delivery tool in vitro and in vivo.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.