Digital breast tomosynthesis (DBT) has been introduced more than a decade ago. Studies have shown higher breast cancer detection rates and lower recall rates, and it has become an established imaging method in diagnostic settings. However, full-field digital mammography (FFDM) remains the most common imaging modality for screening in many countries, as it delivers high-resolution planar images of the breast. To combine the advantages of DBT with the faster acquisition and the unique in-plane resolution capabilities known from FFDM, a system concept was developed for application in screening and diagnosis. The concept comprises an X-ray tube with adaptive focal spot position based on the flying focal spot (FFS) technology and optimized X-ray spectra. This is combined with innovative algorithmic concepts for tomosynthesis reconstruction and synthetic mammograms (SMs). An X-ray tube with FFS was incorporated into a DBT system that performs 50-deg wide tomosynthesis scans with 25 projections in 4.85s. Laboratory evaluations demonstrated significant improvements in the effective modular transfer function (eMTF). The improved eMTF as well as the effectiveness of the algorithmic concepts is shown in images from a clinical evaluation study. The DBT system concept enables high spatial resolution at short acquisition times. This leads to improved microcalcification visibility, reduced risk of motion artifacts, and shorter breast compression times. It shifts the in-plane resolution of DBT into the high-resolution range of FFDM. The presented technology leap might be a key contributor to facilitating the paradigm shift of replacing FFDM with DBT plus SM.
Read full abstract