Agrivoltaics, a system combining the production of agricultural crops and solar energy on the same land area, offers a potential solution to land use competition between different sectors. However, concerns have been raised regarding the impact of shade on plant growth under Agrivoltaic Systems (AVSs). Numerous studies have explored the effects of AVSs shading on agricultural crops. However, most of these studies focused on shade-tolerant crops, leaving a gap in the understanding of how these systems affect shade-intolerant crops. To this end, this study was conducted in Bari, southern Italy, using two types of AVSs: conventional (Con) and semi-transparent (ST) panels. The objective was to assess the impacts of the different levels of shading on the tomato yield and fruit quality. Tomato cultivation occurred between May and August under various conditions: Con panels, ST panels, and Open Field. The results revealed that soil temperature decreased under both AVSs compared to in the open field conditions. However, the significant reduction in photosynthetically active radiation (PAR), up to 43% in ST and 67% in Con, led to yield reductions ranging between 28% and 58% in ST and Con, respectively. Nonetheless, AVSs demonstrated their potential to reduce irrigation water demand by over 15% in ST and more than 20% in Con. Interestingly, the AVSs reduced fruit size but improved certain fruit quality attributes, such as titratable acidity, which is closely correlated with fruit flavour. These findings highlight the challenges of cultivating shade-intolerant crops under AVSs in a Mediterranean climate, while temperate, dry conditions may offer more favourable prospects for agricultural production.
Read full abstract