Toll-like receptors (TLR), a family of evolutionarily conserved pathogen recognition receptors, play pivotal role as primary sensors of invading pathogens. TLR identify molecular motifs of infectious agents (pathogen associated molecular patterns) and elicit an effective defensive response against them. Mammalian TLR derive their name from the Drosophila Toll protein, with which they share sequence similarity. So far, expression of 10 TLR is known in humans. The adaptor proteins, myeloid differentiation factor 88 and Toll IL-1 receptor (TIR) domain containing adaptor inducing IFN-beta (TRIF) are the key players in the TLR signalling cascade leading to the activation of nuclear factor (NF)-kappaB and interferon regulatory factor-3, respectively. Targeted manipulation of the TLR signalling pathway has immense therapeutic potential and may eventually prove to be a boon in the development of innovative treatments for diverse disease conditions. There is accumulating evidence that TLR agonists have tremendous potential as novel therapeutic targets. In this review, we have discussed the immunobiology of TLR and emphasize significant advances made within the ever-expanding field of TLR that provide intriguing insights efficacious in unravelling the complexities associated with TLR.