Colorectal cancer (CRC) is the third most common cancer globally, with limited effective biomarkers and sensitive therapeutic targets. An increasing number of studies have highlighted the critical role of tumor microenvironment (TME) imbalances, particularly immune escape due to impaired chemokine-mediated trafficking, in tumorigenesis and progression. Notably, CC chemokines (CCLs) have been shown to either promote or inhibit angiogenesis, metastasis, and immune responses in tumors, thereby influencing cancer development and patient outcomes. However, the diagnostic and prognostic significance of CCLs in CRC remains unclear. In this study, multiple online tools for bioinformatics analyses were utilized. The findings revealed that the mRNA expression levels of CCL3, CCL4, and CCL26 were significantly elevated in CRC tissues compared to normal tissues, whereas CCL2, CCL5, CCL11, CCL21, and CCL28 mRNA levels were markedly downregulated. Additionally, dysregulation of CCL4, CCL5, and CCL21 was strongly associated with clinical staging, and elevated levels of CCL4, CCL11, and CCL28 were linked to significantly prolonged survival in CRC patients. Functional enrichment analysis indicated that the cellular roles of CCLs were predominantly associated with the chemokine, Wnt, and Toll-like receptor signaling pathways, as well as protein kinase activity. Furthermore, transcriptional regulation of most CCLs involved RELA and NFKB1. Key downstream targets included members of the SRC family of tyrosine kinases (HCK, LYN, and LCK), serine/threonine kinases (ATR and ATM), and others such as CSNK1G2, NEK2, and CDK2. Moreover, CCLs (CCL2, CCL3, CCL4, CCL5, CCL11, CCL21, and CCL28) exhibited strong correlations with major infiltration-related immune cells, including B cells, CD8+ T cells, CD4+ T cells, macrophages, neutrophils, and dendritic cells. In conclusion, our study provides novel insights into the potential utility of CCLs as biomarkers and therapeutic targets for CRC prevention and immunotherapy.
Read full abstract