Summary Proposed by Einstein, Podolsky, and Rosen (EPR) in 1935, the entangled state has played a central part in exploring the foundation of quantum mechanics. At the end of the twentieth century, however, some physicists and mathematicians set aside the epistemological debates associated with EPR and turned it from a philosophical puzzle into practical resources for information processing. This paper examines the origin of what is known as quantum information. Scientists had considered making quantum computers and employing entanglement in communications for a long time. But the real breakthrough only occurred in the 1980s when they shifted focus from general-purpose systems such as Turing machines to algorithms and protocols that solved particular problems, including quantum factorization, quantum search, superdense code, and teleportation. Key to their development was two groups of mathematical manipulations and deformations of entanglement—quantum parallelism and ‘feedback EPR’—that served as conceptual templates. The early success of quantum parallelism and feedback EPR was owed to the idealized formalism of entanglement researchers had prepared for philosophical discussions. Yet, such idealization is difficult to hold when the physical implementation of quantum information processors is at stake. A major challenge for today's quantum information scientists and engineers is thus to move from Einstein et al.'s well-defined scenarios into realistic models.