Contrasting to tetrahydrocannabinol (THC), cannabidiol (CBD) has virtually no psychoactive effects and thus presents a minor risk for abuse. Furthermore, emerging preclinical and clinical evidence indicates that CBD exerts several beneficial pharmacological effects, including anti-inflammatory and antioxidant properties. Even though fever is one of the responses associated with systemic inflammation, no previous study assessed the putative impact of CBD on lipopolysaccharide (LPS)-induced fever. The present study aimed to evaluate whether CBD exerts effects on febrile responses, by modulating the hypothalamic-pituitary-adrenal (HPA) axis, and the inflammatory reflex, in this response. CBD caused no change in euthermic mice, indicating that it does not alter euthermia. Conversely, CBD blunted all the assessed systemic inflammation parameters including fever (a hallmark of infection), plasma pro-inflammatory cytokines and prostaglandin E2 (PGE2) surges, and hypothalamic PGE2 (the proximal mediator of fever) synthesis. Moreover, CBD also reduced LPS-induced increase in plasma corticosterone levels and spleen TNF-α. These data are consistent with the notion that CBD has antipyretic effects, reducing peripheral febrigenic signaling (plasma pro-inflammatory cytokines levels), and eventually down-modulating hypothalamic PGE2 production, possibly in a corticosterone- and inflammatory reflex-dependent manner.