We aim to investigate the effect of YiQi GuBen formula (YQGB) on airway inflammation and airway remodeling in the ovalbumin (OVA)-induced asthma model to further explore the potential mechanisms of YQGB in treating allergic asthma. Mice were divided into five groups randomly (n = 10): the control group, OVA group, OVA + Dex (0.1 mg/kg) group, OVA + low-dose (1.1 g/kg) YQGB group, and OVA + high-dose (2.2 g/kg) YQGB group. Inflammatory cell count and IgE were detected in bronchoalveolar lavage fluid (BALF). Lung tissue histopathology was observed by using H&E, PAS, Masson, and immunohistochemistry staining. qRT-PCR and western blot were applied to analyze key genes and proteins associated with TLR4 and NF-κB signaling pathways. In OVA-induced asthma mice, YQGB decreased eosinophils and IgE in BALF. YQGB alleviated the OVA-induced inflammatory infiltration and declined IL-4, IL-5, IL-13, Eotaxin, ECP, GM-CSF, LTC4, and LTD4. YQGB attenuated the OVA-induced goblet cell metaplasia and mucus hypersecretion. YQGB mitigated the OVA-induced subepithelial fibrosis and lowered TGF-β1, E-Cadherin, Vimentin, and Fibronectin. YQGB ameliorated the OVA-induced airway smooth muscle thickening and lessened α-SMA and PDGF levels. YQGB reduced the expression of TLR4, MyD88, TRAF6, IκBα, and p65 mRNAs, and IκBα and p-p65 protein levels were also reduced. YQGB exhibits the anti-asthma effect by reducing airway inflammation and airway remodeling through suppressing TLR4/NF-κB signaling pathway, and is worth promoting clinically.