Common wisdom might anticipate that two methyl groups placed on a molecular migration route should act as an impediment. However, the “conducted tour” migration of Li+(THF)4 across the aryl ring (“π-route”) during the cis/trans stereoinversion of α-arylvinyllithiums had been found to occur with practically equal velocities in the presence of either one or two ortho-alkyl substituents. We now report that the omission of both ortho-methyl groups retards the stereoinversion process. In order to arrive at an answer to the title question, we investigate the aggregation equilibria and microsolvation states of ortho, ortho′-unsubstituted α-lithiostyrenes by means of approved secondary NMR criteria. Beyond such necessary knowledge about the ground-state properties, we provide kinetic evidence showing that the retarded cis/trans stereoinversion of α-lithiostyrene proceeds by the pseudomonomolecular, ionic mechanism with Li+(THF)4 migration.