Tissue distribution of Fe, Mn, Cu, and Zn, the essential trace elements associated with oxidant and/or antioxidant processes, was examined in iodine- and/or selenium-deficient rats (ID, SeD, ISeD). Fe and Mn were the most affected minerals in all types of deficiency states. Mn levels decreased significantly in the liver in all deficiency states (approx 20-30%), in the heart in ID and SeD rats (approx 30-35%) and in the testis in ID rats (approx 15%). Whereas Mn enhancement was noted in kidney (approx 45%) and plasma in SeD and ISeD (approx 20% and 50%, respectively) animals. However, most striking alterations were seen with Fe. Significant elevation of Fe concentrations were observed in all deficiency states in the kidney (approx 90-125%) and heart (approx 20-25%), and in the liver in SeD (approx 35%) and ISeD (approx 75%) rats, whereas significant (approx 20%) Fe enhancement in the testis was observed only in ISeD animals. Lower Cu (approx 10-15%) and higher Zn (approx 10-20%) concentrations in heart tissues in all deficiency states were found; higher Zn (approx 20-35%) in the kidney of SeD and ISeD rats, and lower Cu in the testis of SeD animals were observed. In brain tissue, no alteration was seen in Fe, Mn, and Zn content, however, significantly increased (approx 15-20%) Cu concentrations were noted in all deficiency states. The results of this study indicated that iodine and/or selenium deficiency may modify the distribution and the homeostasis of other minerals.