The distribution of type-VII collagen, the main molecular component of the anchoring fibrils (AF) attaching the basal lamina (BL, lamina densa of the basement membrane) to the surrounding connective tissue, was investigated in four xenografted human carcinomas of the hypopharynx (H-Stg 1), the lung (L 261), the sigmoid colon (CA 1), and the rectum (R 85). The studies were performed with a recently prepared, affinity-purified and highly specific antibody to type-VII collagen by using the indirect immunofluorescence and the APAAP (alkaline phosphatase anti-alkaline phosphatase) techniques. For comparison, the localization of the intrinsic BL components laminin and type-IV collagen were additionally analyzed in all four carcinomas. It was shown that type-VII collagen usually colocalized to laminin and type-IV collagen and was deposited at the borderline between carcinoma cell clusters and the surrounding strands of connective tissue in a similar, but more diffuse and less continuous distribution than both intrinsic BL components. In the squamous cell carcinoma H-Stg 1 and the adenocarcinoma L261, type-VII collagen was additionally accumulated in enlarged extracellular spaces between carcinoma cells, away from the contact zone to the connective tissue and again colocalized to laminin and type-IV collagen. Numerous carcinoma cells of both xenografts showed remarkable intracytoplasmic immunoreactivity for the antibody to type-VII collagen. Even in the case of the gastrointestinal carcinomas CA 1 and R 85, faint immunoreactivity for type-VII collagen was found at the contact zone between the mucosal epithelium and the surrounding connective tissue. These results confirm that epithelial carcinoma cells are obviously involved with the synthesis of the main molecular component of AF usually attaching the BL to the adjacent connective tissue and hint at a possible correlation between the localization of type-VII collagen and the observed pattern of the BL. However, it cannot be decided whether there is a direct causal relation between both phenomena or whether they are both the consequence of an independent but common cause, such as abnormal cellular differentiation of carcinoma cells. In no case, can the discontinuities in the distribution of type-VII collagen be explained by active tumor cell invasion since xenografted human carcinomas neither invade nor metastasize.
Read full abstract