AbstractThe expression patterns of β-1,3-glucanases (βGlu) and chitinases (Chn) were investigated during the seed germination of members of theCestroideae(threeNicotianaspecies,Petunia hybrida) and theSolanoideae(Capsicum annuum,Physalis peruviana) subgroups of Solanaceous species. Rupture of the micropylar testa (seed coat) and rupture of the micropylar endosperm, i.e. radicle emergence, were distinct and temporally separate events during the germination ofCestroideae-type seeds. βGlu accumulation in imbibedCestroideae-type seeds, occurring after testa rupture but prior to endosperm rupture, was inhibited by abscisic acid (ABA) and promoted by gibberellins (GA) and light, in strict association with germination, and appeared to be caused by transcriptional regulation of the class I βGlu genes. The micropylar cap ofSolanoideae-type seeds does not allow a distinction between testa and endosperm rupture, but βGlu accumulation occurred prior to radicle emergence of pepper andP. peruvianaseeds. ABA inhibited endosperm rupture and βGlu accumulation in the micropylar cap of pepper seeds. In contrast to tomato, βGlu accumulation in pepper seeds was not only confined to the micropylar cap, was due to distinct, tissue-specific βGlu isoforms, and was not accompanied by Chn accumulation. In conclusion, ABA inhibition of germination and βGlu accumulation in the micropylar endosperm appears to be a widespread event during the seed germination of Solanaceous species. In contrast, accumulation of Chn and distinct βGlu isoforms in the embryo, prior to germination, appears to be a species-specific phenomenon within theSolanaceae. In addition, a post-germination co-induction of βGlu and Chn in the root of the emerged seedling was found in endospermic and non-endospermic species and could represent an evolutionarily conserved event during dicot seedling development.