Using light microscopy (Nissl and Golgi techniques), electron microscopy and immunohistochemistry, formation of structure of the brain striatum dorsolateral part from birth to three month of age was studied in rats submitted to acute hypoxia at the period of embryogenesis. Hypoxia at the 13.5th day of pregnancy (E 13.5) was found to lead to a delay of neuronogenesis for the first two weeks of postnatal development as compared with control animals, and the majority of large neurons for this period were degenerated by the type of chromatolysis with swelling of the cell body and processes and lysis of cytoplasmic organelles. By the end of the third week, shrunken hyperchromic or pycnomorphic neurons with the electron-dense cytoplasm and enlarged tubules of endoplasmic reticulum and Golgi complex were also observed. An increased number of swollen processes of glial cells was found in neuropil around the degenerating neurons. By the 30th day as well as in adult animals, destruction of mitochondrial apparatus, an increased number of lysosomes, and blade-shaped nuclei, which are characteristics of the apoptotic cell death, were observed. This is also confirmed by an increased expression of proapoptotic protein (p53) and its co-localization with caspase-3 in a part of neurons. Morphometric analysis showed a decrease of the cell distribution density in striatum and a change of ratio of different cell types in hypoxia-exposed rats as compared with control group. The most pronounced decrease (42.3% at the 5th day, 14.2% at the 10th day, p < 0.01) of the number of large neurons (larger than 80 μm2) was revealed at early stages of postnatal ontogenesis. After 3 postnatal weeks, the number of middle-sized neurons (30–95 μm2) decreased (by 11.8–19.2% as compared with control, p < 0.05). The obtained data have shown that changes of embryogenesis conditions (hypoxia) at the period of the most intensive proliferation of telencephalon neuroblasts lead to impairment of the process of striatal nervous tissue formation. This might be the cause of delay of development and disturbances of behavior and learning, which are observed in rats exposed to prenatal hypoxia.