The solvation of carbon monoxide (CO) in liquid water is important for understanding its toxicological effects and biochemical roles. In this paper, we use ab initio molecular dynamics (AIMD) and CCSD(T)-F12 calculations to assess the accuracy of the Straub and Karplus molecular mechanical (MM) model for CO(aq). The CCSD(T)-F12 CO-H2O potential energy surfaces show that the most stable structure corresponds to water donating a hydrogen bond to the C center. The MM-calculated surface incorrectly predicts that the O atom is a stronger hydrogen bond acceptor than the C atom. The AIMD simulations indicate that CO is solvated like a hydrophobic solute, with very limited hydrogen bonding with water. The MM model tends to overestimate the degree of hydrogen bonding and overestimates the atomic radius of the C atom. The calculated Gibbs energy of hydration using the TIP3P water model is in good agreement with the experiment (9.3 kJ mol-1 expt. vs 10.7 kJ mol-1 calc.). The calculated diffusivity of CO (aq) in TIP3P-model water was 5.1×10-5 cm2/s calc., more than double the experimental value of 2.3×10-5 cm2/s. The hydration energy calculated using the TIP4P-FB water model is in poorer agreement with the experiment (ΔG = 6.8 kJ/mol) but the diffusivity is in better agreement (D=2.5±0.1×10-5 cm2/s).
Read full abstract