In this study, we investigated the vibration of adhesively bonded composite cantilevers consisting of two beech wood lamella and a bondline of flexible polyurethane. The beams had a constant total height, while the thickness of the adhesive layer varied. We analyzed both the driven and free vibration of a single cantilever beam and a cantilever with an additional mass attached to its end. The eigenfrequencies were determined using Fourier analysis of a sweep load response, the response to an impact load excited using an impact hammer, and the response observed via the manual displacement of the beam's tip. The system's damping was estimated according to the recorded logarithmic decrement. Theoretical estimates of the fundamental natural frequency were obtained using the γ-method and employing a linear elastic theory of composite beams. A numerical modal analysis was carried out using the finite element method. Upon comparing the results of our experiments with the numerical estimates and theoretical predictions, a fair agreement was found.
Read full abstract