Patients with endometriosis tend to have a low body mass index, suggesting an inverse relationship between body fat and risk of disease. This is supported by evidence that miRNAs differentially expressed in endometriosis induce browning of pre-adipocytes in vitro. Thus, we hypothesize that endometriosis may underlie adipose tissue (AT) dysfunction and browning. Identify inflammation and browning processes in AT collected from endometriosis patients. Visceral and subcutaneous AT samples were obtained during endometriosis (n = 32) or uterine myoma (n = 14; controls) surgery. Blood catecholamines were determined by high-performance liquid chromatography while IL-6 and TGF-β levels were quantified by ELISA. Adipocyte cross-sectional areas were analyzed in H&E-stained sections by computer-assisted morphometry. Macrophages (F4/80; Galectin-3) and browning activation (UCP-1; PGC-1α) in tissues were identified by dual label immunofluorescence. Expression of inflammatory (IL-6; MCP-1; Galectin-3; CD206; TIMP1; TGF-β) and browning-related (UCP-1; PGC-1α; DIO2; CITED1; CIDEA; TMEM26; TBX1; PRDM16; PPAR-γ) molecules in AT were assessed by RT-PCR and Western blotting. Compared to controls, patients presented smaller adipocytes, especially in VAT, and lower norepinephrine levels. Serum IL-6, but not TGF-β, was increased in patients. UCP-1, PGC-1α, IL-6, and MCP-1 were upregulated in VAT from endometriosis women, which also evidenced a reduction of CD206, relative to controls. However, no differences were found in mRNA expression of IL-6, TIMP1, and TGF-β nor Galectin-3 protein levels. In SAT, protein expression remained unchanged between patients and controls. Our findings support an endometriosis' role as a pro-catabolic state along with local signals of VAT browning and inflammation.
Read full abstract