Abstract
PRV, known for its neurotropic properties, is capable of inducing severe neuronal damage. Our study discovered that following PRV infection, the expression of MMP2 was upregulated, leading to the degradation of ZO-1. Furthermore, upon PRV infection in the host, the promoter of TIMP1 is significantly activated, resulting in a significant increase in TIMP1 protein levels. This upregulation of TIMP1 inhibits the proliferation of PRV through the PI3K/Akt signaling pathway. This study elucidated the mechanism through which PRV, including the PRV XJ delgE/gI/TK strains, compromises the blood-brain barrier and identifies the antiviral response characterized by the activation of the PI3K/Akt signaling pathway within infected host cells. These findings provide potential therapeutic targets for the clinical management and treatment of PRV.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have