Skilful arthroscopy requires an aboveaverage level of manual dexterity. It is evident that particular motor skills can be learned and trained before arthroscopic training. The aim of this prospective cohort study was to investigate the impact of movement-related cognitive training on the learning curve during arthroscopic basic training. Fifty right-handed participants without arthroscopic experience were matched to an intervention group (n = 25) and a control group (n = 25). Prior to basic arthroscopic skill training with a simulator, the intervention group underwent 12 weeks of movement-related cognitive training. Cognitive and motor skills were assessed in both groups by using standardised tests (CogniFit test, angle reproduction test, two-arm coordination test) as a pretest and, for the intervention group, again before arthroscopic training as a posttest. For arthroscopic simulator training, three tasks ('Telescoping', 'Periscoping', 'Triangulation') from the Fundamentals of Arthroscopic Surgery Training module were selected and practiced 10 times with the camera in the right and left hands. The learning progress was quantified by exercise time, camera path length and hook path length. No significant differences in sex distribution, age distributionor the results of the pretests between the intervention group (n = 21) and the control group (n = 25) were found (n.s.). The intervention group improved significantly from the pretest to the posttest in the CogniFit (p = 0.003) and two-arm coordination test in terms of time (p < 0.001) and errors (p = 0.002) but not in the angle reproduction test. No significant differences were found between the groups for the three arthroscopic tasks. The hypothesis that movement-related cognitive training shortens the learning curve for acquiring arthroscopic basic skills cannot be confirmed. Other factors influencing the learning curvesuch as talent, teaching method and motivation have a greater impact on the acquisition of complex motor skills. Level II.