The time course of DNA synthesis in developing haploid gametophytes of the giant kelp Macrocystis pyrifera was determined, and the effects of arsenic (As) on the temporally distinct nuclear events, DNA synthesis and subsequent nuclear division/translocation, were investigated to establish which of these specific events may be disrupted by this contaminant. Experiments were carried out on material collected from kelp beds near Santa Barbara, California from 1993–1994. Timing of DNA synthesis was determined during development by use of the fluorochrome, DAPI (4′,6-diamidino-2-phenylindole), and single-cell microspectrofluorometry. Zoospores, which result from meiosis, had already undergone two rounds of DNA synthesis at the time of release. The developing gametophytes underwent an additional two rounds of replication of DNA by 16 h of development, and following the first nuclear division/translocation, the gametophyte contained eight times the minimum DNA level throughout subsequent development. Both DNA synthesis and nuclear division/translocation, were found to be inhibited by As. Phosphate enrichment reduced the inhibitory effects of As on division/translocation of the nucleus, supporting the hypothesis that As interferes with phosphorylation. Gametophytes were more severely affected by As under light conditions, as opposed to dark, suggesting that photosynthesis may be more sensitive than dark metabolism.
Read full abstract