Historical forestry practices (e.g., fire suppression, heavy timber logging) have contributed to a discernable change in stand composition of western forests in the U.S., which now comprise a tinderbox mixture of increased surface and ladder fuels, dense stands, and fire-intolerant species. Forest managers are mitigating this concern by implementing silviculture practices (e.g., selective logging, thinning, prescribed burning) to reduce fuel loads and improve stand resiliency. Concern for habitat specialists, such as the fisher (Pekania pennanti), have arisen as they may be negatively influenced in the short-term by modifications to their environment that are needed to ensure long-term habitat persistence. To address this issue, we initiated an 8-year study in 2010 in Ashland, Oregon, to determine the behavioral response of fishers to fuel reduction treatments applied in forested stands. We measured the distance of each location from eight GPS-collared fishers to all treatments before and after they were treated within each home range, and performed three statistical tests for robustness, including a multi-response permutation procedure, chi-squared test of independence, and a Kolmogorov–Smirnov assessment. We found high variation among individuals to the tolerance of habitat manipulation. Using effect size to interpret the magnitude of fisher response to pre- and post-treatment effects, 1 fisher showed a moderate negative relationship to fuel reduction treatments, 5 exhibited a weak negative response, and 2 had a weak positive association with treatments. We used analysis of variance on the three fishers exhibiting the largest effect sizes to treatment disturbance, and used treatment, temporal, and habitat covariates to explore whether these factors influenced behavioral differences. Treatment season and vegetation class were important factors influencing response distance in the pre-treatment period. Post-treatment variables eliciting a negative treatment response were treatment season and treatment size, and results were slightly different when parsing out individual effects compared to a pooled sample set. Our findings suggested that seasonal timing and the location of management activities could influence fisher movement throughout their home range, but it was largely context-dependent based on the perceived risks or benefits to individuals.
Read full abstract