This study is based on the stock returns of 11 subindustry markets in the international clean energy market from 2010 to 2024 and constructs a skewed t distribution dynamic factor copula model. The time-varying load factor is used to characterize the correlation between a single subindustry market and the entire system, and the joint probability of distress is calculated as a measure of the overall level of systemic risk. Two indicators, Systemic Vulnerability Degree and Systemic Importance Degree, are introduced to evaluate the vulnerability of a single subindustry market in systemic risk and its contribution to systemic risk. A conditional risk-spillover index is constructed to measure the risk-spillover level between subindustry markets. This method fully considers the individual differences and inherent correlations of the international clean energy market subsectors, as well as the fat tail and asymmetry of returns, thus capturing more information and more timely information. This study found that the correlation between subindustry markets changes over time, and during the crisis, the market correlation shows a significant upward trend. In the measurement of the overall level of systemic risk, the joint probability of distress can identify the changes in systemic risk in the international clean energy market. The systemic risk of the international clean energy market presents the characteristics of rapid and multiple outbreaks, and the joint default risk probability of the whole system can exceed 0.6. The outbreak of systemic risk is closely related to a series of major international events, showing a strong correlation. In addition, the systemic vulnerability analysis found that the biofuel market has the lowest systemic vulnerability, and the advanced materials market has the highest vulnerability. The energy efficiency market is considered to be the most important market in the system. The advanced materials market and renewable energy market play a dominant role in the risk contribution to other markets, while the geothermal market, solar market, and wind energy market are net risk overflow parties in the tail risk impact, and the developer market and fuel cell market are net risk receivers. This study provides a theoretical basis for systemic risk management and ensuring the stability of the international clean energy market.
Read full abstract