We propose a benchmark for comparing gap-filling techniques used on global time-variable gravity field time-series. The Gravity Recovery and Climate Experiment (GRACE) and the GRACE Follow-On missions provide products to study the Earth’s time-variable gravity field. However, the presence of missing months in the measurements poses challenges for understanding specific Earth processes through the gravity field. We reproduce, adapt, and compare satellite-monitoring and interpolation techniques for filling these missing months in GRACE and GRACE Follow-On products on a global scale. Satellite-monitoring techniques utilize solutions from Swarm and satellite laser ranging, while interpolation techniques rely on GRACE and/or Swarm solutions. We assess a wide range of interpolation techniques, including least-squares fitting, principal component analysis, singular spectrum analysis, multichannel singular spectrum analysis, auto-regressive models, and the incorporation of prior data in these techniques. To inter-compare these techniques, we employ a remove-and-restore approach, removing existing GRACE products and predicting missing months using interpolation techniques. We provide detailed comparisons of the techniques and discuss their strengths and limitations. The auto-regressive interpolation technique delivers the best score according to our evaluation metric. The interpolation based on a least-squares fitting of constant, trend, annual, and semi-annual cycles offers a simple and effective prediction with a good score. Through this assessment, we establish a starting benchmark for gap-filling techniques in Earth’s time-variable gravity field analysis.
Read full abstract