Abstract

In recent decades, geophysical and remote sensing monitoring techniques have advanced to the point where they can be utilized. It is possible to investigate the spatiotemporal mass fluctuations induced by groundwater changes over the Southern Arabian Peninsula (SAP) by combining time-variable gravity data with land surface model outputs and rainfall data. Here are the findings: The average annual precipitation rates for the whole study region were 91.11, 87.6, and 96.61 mm yr−1 during the entire period (2002–2021), period before 2013, and period after 2012, respectively. The southern and eastern parts (Zone I) of the investigated region show modest rainfall rates of 109.6, 105, and 117 mm yr−1 during the whole period, period before 2013, and period after 2012, respectively. The Rub El Khali region (Zone II) is receiving lower precipitation rates of 54.6, 53.3, and 56.5 mm yr−1 throughout the whole period, period before 2013, and period after 2012, respectively. Based on the three distinct gravity solutions, the average Terrestrial Water Storage (ΔTWS) values are computed through the entire period to be − 0.21 ± 0.011, − 0.15 ± 0.013, and − 0.32 ± 0.0107 cm yr−1 for the whole study region, Zone of the southern and eastern regions, and Zone of Rub El Khali, respectively. The whole study region, Zone of the southern and eastern parts, and Zone of Rub El Khali are showing highly negative ΔTWS in the period before 2013, in comparison to slightly negative to slightly positive ΔTWS trends in period after 2012. The average annual change in groundwater storage for the entire study area was calculated at − 0.21 ± 0.011, − 0.29 ± 0.024, and − 0.091 ± 0.038 cm yr−1 throughout the investigated period, period before 2013, and period after 2012, respectively. Zone of Rub El Khali is showing higher negative groundwater storage trend (ΔGWS) averaged at − 0.32 ± 0.104 cm yr−1 throughout the investigated period, whereas Zone of southern and eastern regions is showing lower negative groundwater storage trend of − 0.15 ± 0.013 cm yr−1. Most of the recharge rate occurs in Zone of the southern and eastern regions reaching up to + 0.77 ± 0.092 cm yr−1 by taking the average groundwater withdrawal rate of + 0.92 ± 0.092 cm yr−1 during the whole period. This integrated approach is a valuable and economical method for more effectively assessing the variations of groundwater resources across wide areas.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call