Time-variant reliability problems caused by deterioration in material properties, dynamic load uncertainty, and other causes are widespread among practical engineering applications. This study proposes a novel time-variant reliability analysis method based on stochastic process discretization (TRPD), which provides an effective analytical tool for assessing design reliability over the whole lifecycle of a complex structure. Using time discretization, a stochastic process can be converted into random variables, thereby transforming a time-variant reliability problem into a conventional time-invariant system reliability problem. By linearizing the limit-state function with the first-order reliability method (FORM) and furthermore, introducing a new random variable, the converted system reliability problem can be efficiently solved. The TRPD avoids the calculation of outcrossing rates, which simplifies the process of solving time-variant reliability problems and produces high computational efficiency. Finally, three numerical examples are used to verify the effectiveness of this approach.
Read full abstract