Significant Wave Height (SWH) is crucial in many aspect of ocean engineering. The accurate prediction of SWH has therefore been of immense practical value. Recently, Artificial Intelligence (AI) time series prediction methods have been widely used for single-point short-term SWH time-series forecasting, resulting in many AI-based models claiming to achieve good results. However, the extent to which these complex AI models can outperform traditional methods has largely been overlooked. This study compared five different models - AutoRegressive (AR), eXtreme Gradient Boosting (XGB), Artificial Neural Network (ANN), Long Short-Term Memory (LSTM), and WaveNet - for their performance on SWH time series prediction at 16 buoy locations. Surprisingly, the results suggest that the differences of performance among different models are negligible, indicating that all these AI models have only “learned” the linear auto-regression from the data. Additionally, we noticed that many recent studies used signal decomposition method for such time series prediction, and most of them decomposed the test sets, which is WRONG.