Identification of the onset of vegetation greenup is a key factor in characterizing and monitoring vegetation dynamics over large areas. However, the relationship between greenup onset dates estimated from satellite imagery and the actual growth stage of vegetation is often unclear. Herein, we present an approach for comparing pixel-level onset dates to regional planting and emergence information for agricultural crops, with the goal of drawing reliable conclusions regarding the physical growth stage of the vegetation of interest at the time of greenup onset. To accomplish this, we calculated onset of greenup using MODIS 250 m, 16-day composite NDVI time series data for Kansas for 2001 and a recently proposed methodology for greenup detection. We then evaluated the estimated greenup dates using the locations of 1,417 large field sites that were planted to corn, soybeans, or sorghum in 2001, in conjunction with United States Department of Agriculture (USDA) weekly crop progress reports containing crop planting and emergence percentage estimates. Average greenup onset dates calculated for the three summer crops showed that the dates were consistent with the relative planting order of corn, sorghum, and soybeans across the state. However, the influence of pre-crop vegetation (weeds and “volunteer” crops) introduced an early bias for the greenup onset dates calculated for many field sites. This pre-crop vegetation signal was most pronounced for the later planted summer crops (soybeans and sorghum) and in areas of Kansas that receive higher annual precipitation. The most reliable results were obtained for corn in semi-arid western Kansas, where pre-crop vegetation had considerably less influence on the greenup onset date calculations. The greenup onset date calculated for corn in western Kansas was found to occur 23 days after 50 percent of the crop had emerged. Corn’s greenup onset was detected, on average, at the agronomic stage where plants are 15 to 45 cm (6 to 18 inches) tall and the crop begins its rapid growth.