The number of intelligent applications available for IIoT environments is growing, but when the time-series data these applications rely on are incomplete, their performance suffers. Unfortunately, incomplete data are all too frequent to a phenomenon in the world of IIoT. A common workaround is to use imputation. However, the current methods are largely designed to reconstruct a single missing pattern, where a robust and flexible imputation framework would be able to handle many different missing patterns. Hence, the framework presented in this study, RAEF, is capable of processing multiple missing patterns. Based on a recurrent autoencoder, RAEF houses a novel neuron structure, called a gated regulator, which reduces the negative impact of different missing patterns. In a comparison of the state-of-the-art time-series imputation frameworks at a range of different missing rates, RAEF yielded fewer errors than all its counterparts.
Read full abstract