This study investigated the effectiveness of a dielectric barrier discharge (DBD) plasma actuator operating in burst-in-burst (BIB) mode for flow separation control on a NACA 0015 airfoil. Time-resolved particle image velocimetry measurements were conducted at a Reynolds number of 66,000 and 13° angle of attack. Various BIB signal configurations were tested, with actuation periods of 70 ms and 150 ms, non-actuation periods ranging from 5 ms to 50 ms, and burst frequencies of 300 Hz and 600 Hz. Proper orthogonal decomposition was applied to analyze the flow field dynamics. The results showed that BIB actuation maintained flow attachment with reduced power consumption compared with continuous burst actuation. However, the effectiveness was highly sensitive to the BIB parameters, with some configurations failing to achieve consistent reattachment and becoming unstable. This study reveals complex interactions between actuation vortices and separation processes, highlighting both the potential and challenges of intermittent plasma actuation for efficient flow control.