Excitons produced in materials play a crucial role in photo-energy conversion such as photovoltaics and electroluminescence devices. The temporal and spatial diffusion of excitons is a key factor for dominating the fundamental performance of optoelectronic materials. In this context, analysis of the exciton diffusion dynamics is an important issue for obtaining the rational design of the materials. Excitons diffusing in materials can be characterized by several parameters such as the energy level, orientation of the transition dipole moment and spatial distribution, and the detection of these properties is required for the comprehensive analysis. In the present study, we show time-resolved fluorescence methods for detecting the above relevant properties of excitons.First, time-resolved fluorescence spectroscopy is a basic technique for analyzing the exciton diffusion dynamics. Fluorescence intensity is detected as functions of observation wavelength and time, and the spectral intensity and shift of fluorescence bands provide information on the population of excitons and their energy level. For example, dynamic Stokes shift indicates downhill energy migration and excitons are trapped by the defective site in molecular aggregates. Second, fluorescence anisotropy can be a good indicator for tracking the exciton diffusion in amorphous materials. Fluorescence anisotropy is sensitive to orientation change in transition dipole moments (TDMs) between absorption and fluorescence. In systems where the relative orientation of adjacent molecules is different from each other, such as amorphous solids, the exciton diffusion is accompanied with the change in TDM. Thus, appropriate modeling of molecular alignment enables quantitative estimation of the exciton diffusion coefficient and diffusion length from the anisotropy signal. Finally, time-resolved imaging is a combination of time-resolved spectroscopy and super-resolution microscopy, and an emergent technique for visualizing real-space propagation of excitons in materials. The diffraction-limited excitation beam produces excitons in several hundreds of nanometers and the subsequent exciton diffusion is evaluated by the spatial width of the fluorescence spot. The temporal broadening of the fluorescence spot directly reflects the exciton distribution and we can intuitively obtain the diffusion coefficient and length. Unlike the conventional methods for bulk materials, the advantage of the time-resolved imaging is the applicability to materials with nano- and meso-scale heterogeneous structure and it enables site-selective evaluation of the exciton transport capability. In the conference site, we will also show the application of the above methods to supramolecular polymers and thermally activated delayed fluorescence materials. Figure 1