We reformulate the Matrix theory of D-particles in a manifestly Lorentz-covariant fashion in the sense of 11 dimesnional flat Minkowski space-time, from the viewpoint of the so-called DLCQ interpretation of the light-front Matrix theory. The theory is characterized by various symmetry properties including higher gauge symmetries, which contain the usual SU($N$) symmetry as a special case and are extended from the structure naturally appearing in association with a discretized version of Nambu's 3-bracket. The theory is scale invariant, and the emergence of the 11 dimensional gravitational length, or M-theory scale, is interpreted as a consequence of a breaking of the scaling symmetry through a super-selection rule. In the light-front gauge with the DLCQ compactification of 11 dimensions, the theory reduces to the usual light-front formulation. In the time-like gauge with the ordinary M-theory spatial compactification, it reduces to a non-Abelian Born-Infeld-like theory, which in the limit of large $N$ becomes equivalent with the original BFSS theory.