A \(\Delta\)-model approach to characterize changed aircraft dynamics due to icing is analytically derived and its parameters are estimated. The model extension is formulated as a separate module in the aircraft flight mechanics simulation and can be used in existing simulation models. The application of the output error method in time domain allows to satisfactorily match model outputs and measurements as well as calculated aerodynamic derivatives. Using available flight data of a light business jet with different ice accumulation cases provided by EMBRAER, model parameters of the \(\Delta\)-model are determined and interpreted pertaining to the aerodynamic degradation caused by icing. The results show good promise that the combination of modeling approach and estimation technique could be applicable to extend existing simulator models providing a basis for pilot training under icing conditions.