This paper presents an accurate and computationally efficient time-domain design method for the stability region determination and optimal parameter tuning of delayed feedback control of a flying robot carrying a suspended load. This work first utilizes a first-order time-delay (FOTD) equation to describe the performance of the flying robot, and the suspended load is treated as a flying pendulum. Thereafter, a typical delayed feedback controller is implemented, and the state-space equation of the whole system is derived and described as a periodic time-delay system. On this basis, the differential quadrature method is adopted to estimate the time-derivative of the state vector at concerned sampling grid point. In such a case, the transition matrix between adjacent time-delay duration can be obtained explicitly. The stability region of the feedback system is thereby within the unit circle of spectral radius of this transition matrix, and the minimum spectral radius within the unit circle guarantees fast tracking error decay. The proposed approach is also further illustrated to be able to be applied to some more sophisticated delayed feedback system, such as the input shaping with feedback control. To enhance the efficiency and robustness of parameter optimization, the derivatives of the spectral radius regarding the parameters are also presented explicitly. Finally, extensive numeric simulations and experiments are conducted to verify the effectiveness of the proposed method, and the results show that the proposed strategy efficiently estimates the optimal control parameters as well as the stability region. On this basis, the suspended load can effectively track the pre-assigned trajectory without large oscillations.
Read full abstract