This paper presents the experimental validations of reconstructing the characteristics of the excitation forces that act inside a vibrating structure, which includes the location, type, amplitude, and spectrum, based on a single set of measurements of the normal surface velocity on the exterior surface by using the modified Helmholtz Equation Least Squares (HELS) method, as if one could see through this solid structure. Phase I of this paper shows the reconstruction of the vibroacoustic responses in the exterior region of the structure, including the field acoustic pressure, the surface acoustic pressure, the normal surface velocity or Operational Deflection Shape (ODS), the normal component of the time-averaged acoustic intensity, and the time-averaged acoustic power. Phase II of this paper illustrates the reconstruction of the excitation forces with the fluid-loading effects taken into consideration, based on the vibroacoustic responses reconstructed in the exterior region. The significance of the study, namely, the interrelationships among the excitation force, structural vibration, and acoustic radiation is discussed. The knowledge thus acquired may be important for engineers to analyze various complex noise and vibration issues in practice and to come up with the most cost-effective noise and vibration mitigation strategies.
Read full abstract