Chinese fir (Cunninghamia lanceolata) is an important timber species that has been widely cultivated in southern China. It is extensively applied in medicine, environmental monitoring, furniture, urban (e.g., street trees) and rural landscaping, windbreak forest, soil and water conservation. In January 2022, distinct leaf spot symptoms were observed in Chinese fir in Hongya Forestry (29°45'N, 103°11'E) Meishan City, Sichuan Province, China. Field surveys showed that the disease was widespread, with around 70% disease incidence. The typical symptoms initially appeared as yellowish-brown necrotic lesions on the margin of the leaves. Subsequently, lesions gradually expanded and developed into larger necrotic areas with red-brown irregular shape. The lesions later expanded throughout the leaf. Infected leaves turned dark brown and wilted, leading to seeding's death. Diseased leaves with typical symptoms were collected for pathogen isolation and identification. Infected tissues from ten samples were cut into small pieces of 2 × 2 mm. Infected tissues were surface disinfected with 3% sodium hypochlorite and 75% ethanol for 30s and 60s, respectively, and rinsed with sterile water 3 times. They were blotted dry with autoclaved paper towels and incubated on potato dextrose agar (PDA) with streptomycin sulfate (50 μg/mL) for 5 ~ 8 days at 25°C. and 12 h light/dark period. The diameter of the colonies reached 65.7 to 75.9 mm, with a gray to black center, and white edges while the reverse sides were gray to orange. Conidia were single-celled, colorless, straight, cylindrical, bluntly rounded at both ends, Conidia dimensions varied from, 7.3 μm to 15.7 μm in length and 3.3 μm to 6.1 μm in width (n = 100). For molecular identification, the genomic DNA of isolate SM2290708, SM229070801 and SM229070802 were extracted using a fungal genomic DNA extraction kit (Beijing Solarbio Science & Technology Co., Ltd., City, China). The internal transcribed spacers of the ribosomal RNA (ITS) [ITS1/ITS4 (White et al., 1990), calmodulin (CAL) (Weir et al., 2012), β-tubulin (TUB2) (O'Donnell et al., 1997), and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) (Templeton et al. 1992) were amplified. Sequences were deposited in GenBank (ITS: ON564877, OQ535027 and OQ535028; CAL: ON583827, OQ538101 and OQ538102; TUB2: ON583830, OQ538104 and OQ538105; and GAPDH: ON583831, OQ538108 and OQ538109). BLAST results showed that our ITS, CAL, TUB2 and GAPDH sequences were >99% identical to the corresponding sequences of Colletotrichum kahawae deposited at NCBI (GenBank JX010231, JX009642, JX010444, and JX010012). Identification was confirmed by Bayesian inference using MrBayes (Fig 2). The conidial suspension (1 × 106 conidia/ml) was used for inoculation by spraying leaves of ten 3-year-old Chinese fir plants for pathogenicity test. Fifteen leaves of each plant were inoculated. An equal number of control leaves was sprayed with sterilized distilled water as a control. Finally, all potted plants were placed in a greenhouse at 28°C under a 16 h/8 h photoperiod and in 73% to 79% relative humidity. After fifteen days, the symptoms observed on the inoculated plants were similar to those of the original diseased plants, but the controls remained asymptomatic. Colletotrichum kahawae was re-isolated from the infected leaves and identified by both morphological characteristics and DNA sequence analysis. The pathogenicity test was repeated three times, which showed similar results, confirming Koch's postulates. To our knowledge, this is the first report of brown leaf spot on C. lanceolata caused by C. kahawae in China. The results of this study provide basic information for diagnosis of the pathogen and developing prevention strategies to manage C. lanceolata leaf spot disease.
Read full abstract