This work investigates the excitation of dense comb-like enhanced leaky mode resonance (eLMR) in tilted fiber Bragg grating (TFBG) integrated with indium tin oxide (ITO) nanocoating. The ITO overlay leads to a large reduction in mode loss and a great increase of propagation length for s-polarized leaky modes, which means the leaky modes become guided. The guidance of leaky modes enhances significantly the interaction with the core guided mode, which leads to the generation of strong dense comb-like eLMR. The results show that the ultra-narrow eLMR bands present promising sensing performance with an extended measurement range and provide advantages of high Q measurement over the case of surface plasmon resonance (SPR) and lossy mode resonance (LMR). The similarities and differences between the eLMR and SPR and LMR are also discussed. This study offers new opportunities to develop eLMR-based multifunctional fiber-optic devices with high performance.