AbstractRecently, heteromolecular crystals of fullerene C60 and cubane (C8H8) have been synthesized. For some temperatures the C60 molecules are free to rotate whereas cubanes behave like a static bearing in a so-called rotor-stator phases. In this work we report classical and tight-binding molecular dynamics simulations in order to investigate the rotor-stator dynamics and polymerization processes. Our results show that, for 200 K and 400 K, cubane molecules remain basically fixed, presenting only thermal vibrations within the timescale of our simulations, while C60 fullerenes show rotational motions. Fullerenes perform “free” rotational motions at short times (< 1 ps), small amplitude hindered rotational motions (librations) at intermediate times, and rotational diffusive dynamics at long times (> 10 ps). Random copolymerization among cubanes and fullerenes were observed when temperature is increased, leading to the formation of a disordered structure.