Adamantinomatous craniopharyngioma (ACP) is the most common benign tumor in the sellar region of children and originates from embryonic remnants. Owing to its unique location and frequent tight adhesion to and invasion of surrounding structures, the ACP poses significant challenges for neurosurgical treatment. Traditionally, the core treatment for ACPs has been surgical resection supplemented with radiotherapy in cases of residual or recurrent tumors. As a result, ACP classification has been based primarily on the tumor's relationship with surrounding anatomical and histological structures, guiding the selection of surgical approaches and the prevention of complications. Moreover, efforts to explore pharmacological treatments for ACP have yielded varying results across different cases, creating confusion among researchers. This variability also suggests the possibility of different molecular subtypes within ACPs, despite being driven by a single gene mutation. With advancements in molecular biological studies, such as ACP RNA sequencing, whole-exome sequencing, and methylation analysis, along with the discovery of interactions between different molecular pathways within ACP, researchers have been continuously exploring the molecular subtyping of ACP and predicting the efficacy of targeted therapies on the basis of these subtypes. This review focuses on summarizing and synthesizing the molecular mechanisms and potential subtypes of ACP, aiming to provide theoretical support for future research on the molecular subtyping of ACP.
Read full abstract