This article makes an attempt to investigate the outcome of activated flux and filler wire in addition to A-TIG welding and TIG welding of Inconel 625 respectively. Ni-Cr-Mo enriched filler namely ERNiCrMo-3 was used to join 6.5-mm-thick plates. Microstructure characterization, mechanical properties evaluation and secondary dendritic arm spacing measurements were carried out to find the cause of the perceived differences. Tensile test failures were observed at the weld zone in both welding processes. Charpy impact studies showed that weldment using A-TIG revealed a low toughness value compared to the TIG weldment. Root bend test showed no discontinuity in both fusion zones and hence, the weldment was produced without defect. The deleterious laves phase was reduced when activated flux and fillers were used. Corrosion performance was undertaken in a 3.5 wt% NaCl solution, to illustrate the outstanding corrosion resistance in Inconel 625’s fusion zone using A-TIG and TIG welding processes.