Tick-borne diseases pose a growing threat to human and animal health in Europe, with tick-borne encephalitis virus (TBEV) and Crimean-Congo haemorrhagic fever virus (CCHFV), vectored by Ixodes ricinus and Hyalomma marginatum, respectively, emerging as primary public health concerns. The ability of ticks to transmit pathogens to multiple hosts and maintain infections across life stages makes them highly efficient vectors. However, many aspects of tick ecology and vectorial capacity remain understudied. This review examines key factors contributing to the vectorial competence of European ticks and their associated viruses. We first explore the influence of climate change on vector and disease ecology, using TBEV and CCHFV as case studies. We then analyse the role of the tick antiviral response in shaping vector competence. By integrating these elements, this review aims to enhance our understanding of tick-borne viral diseases and support the development of public health strategies, particularly through the One Health framework, to mitigate their impact in Europe.
Read full abstract